
Main Functions and Members
None of the movement commands are blocking, meaning that if you
tell the robot to walk for two seconds, your program will keep
running while that’s happening rather than wait for the walk action
to finish. This can have both useful and undesirable side effects, so
just bear this in mind. Secondly, Marty queues actions, so if you
send a walk, kick and then another walk they will all happen one-
after the other, not at the same time or overwriting each-other.

martypy.Marty(url='socket://192.168.0._', client_types=dict(),

default_lifelike=True, *args, **kwargs)

Class constructor for a Marty client instance, with a default URL given.

When you create a Marty instance,

the enable_safeties(True) and enable_motors(True) commands are sent to the

Robot. If the kwarg default_lifelike is True, lifelike behaviours will also be

enabled.

*args and **kwargs are passed on to the client type, which will be chosen depending

on the protocol specified the URL. Currently the natively supported client types

are socket, serial, ros and test.

For instance, the debug keyword argument can be useful for showing what the

client is sending, and other stuff over the Socket API when using the socket client

type.

For more info on extending the available client types via client_types see here.

hello()

Moves to the zero position and wiggles the eyebrows. Be careful with this, as if the

Robot doesn’t know where it it, it will move as quickly as it can to the zero

positions, which can knock the robot over. It’s best used as the first command you

send when you turn the Robot on, where it should be close to the zero pose.

stop(stop_type=None)

Stop the robot moving. stop_type is a str which should be a key in

the Marty.STOP_TYPE dict. If it is none (the default) then 'clear and stop' will be

assumed. Other options are:

clear queue
clear movement queue only (so finish the current movement)

clear and stop
clear movement queue and servo queues (freeze in-place)

clear and disable
clear everything and disable motors

clear and zero
clear everything, and make robot return to zero

pause
pause, but keep servo and movequeue intact and motors enabled

pause and disable
as above, but disable motors too

move_joint(joint_id, position, move_time)

Move a specific joint, selected by joint_id (0 to 8) to position (-128 to 127)

taking move_time milliseconds

lean(direction, amount, move_time)

Lean over in a direction, taken from SIDE_CODES taking move_time milliseconds

walk(num_steps=2, start_foot='auto', turn=0, step_length=40,

move_time=1500)

Instructs the robot to start walking, with defaults set for all

parameters. move_time is in milliseconds (1/1000 of a

second), step_length is roughly millimetres. turn is an int8 in the range -128 to 127.

0 makes the robot walk straight ahead, negatives move to the Robot’s right,
positives to the left (i.e. positive Y-Axis direction).

eyes(angle, move_time=100)

Move the eyes to angle position, taking move_time milliseconds

kick(side='right', twist=0, move_time=2000)

Kick with the foot on side (again from SIDE_CODES) taking move_time milliseconds.

The twist (-128 to 127) argument adds a knee twist to the kick. 0 is straight ahead.

arms(left_angle, right_angle, move_time)

Move the arms to each respective angle, taking move_time milliseconds

celebrate(move_time=4000)

Do a little celebration, taking move_time milliseconds. The default is sensible,

though this is hilarious/adorable with a move time around 1000.

circle_dance(side, move_time)

Makes Marty do a little dance in a circular motion. side should be a str

from SIDE_CODES.

sidestep(side, steps, step_length, move_time)

Walk sideways to side (from SIDE_CODES)

with roughly millimetre step_length taking move_time

play_sound(freq_start, freq_end, duration)

Play a tone that linearly interpolates between the Frequency freq_start in Hz

to freq_end, taking duration milliseconds to play.

get_battery_voltage()

Returns a float that is the reading of the battery voltage from the board.

get_accelerometer(axis)

Returns a float reading of the axis = 'x' or 'y' or 'z' from the board. Note the

axes are marked on the control board, see here also for conventions and

orientation.

The readings are in Gs, i.e. 1 represents an acceleration of 9.81ms-2 in that direction.

get_motor_current(motor_id)

Returns a float of the current detected on the motor_id’s channel by the control

board

pinmode_gpio(gpio, mode)

Configure a GPIO pin’s function. mode should be a str from GPIO_PIN_MODES.

digitalread_gpio(gpio)

Returns the HIGH/LOW state of a GPIO pin (0 to 8) as True or False

write_gpio(gpio, value)

Write a value to a GPIO port. Acceptable value types depend on the GPIO

configuration.

enable_motors(enable=True, clear_queue=True)

Toggles whether the motors are enabled (allowed to move) or disabled, where they

can freely move. This is called just before the Marty constructor completes.

Enable motors also unpauses the movement queue (see stop) so you probably also

want to send stop('clear queue') before enabling motors to prevent a jump. This

is done by default with the clear_queue argument.

lifelike_behaviour(enable=True)

If enabled, Marty will perform a short action every minute or so to remind you that

it’s on. This is disabled by default, but we’d recommend turning it on.

If Lifelike Behaviours are on, they will still happen even if motors are disabled. To

prevent them from happening you need to explicitly disable Lifelike Behaviours.

SIDE_CODES

A str, one of 'left', 'right', 'forward' and 'backward'. These are relative to

Marty’s facing direction.

STOP_TYPE

A str, one of 'clear queue', 'clear and stop', 'clear and disable', 'clear and

zero', 'pause' and 'pause and disable'

GPIO_PIN_MODES

A str, one of 'digital in', 'analog in' and 'digital out'.

